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MULTIFOCAL THREE DIMENSIONAL BOOTLACE LENSES

INTRODUCTION
t

It is well known that a two dimensional (parallel plate configuration) bootlace lens can be designed
to have more than one focal point [1-31. Wide angle scanning capabilities of these lenses in two dimen-
sions is well established, being larger for higher numbers of focal points. Similarly, Ruze (41 has
demonstrated the wide-angle scanning capability of cylindrical metal plate lenses designed to have two
focal lines. Dion and Ricardi [5] reported on a three dimensional waveguide lens which has two perfect
focal points. The spherical-planar lens [61 is a three dimensional bootlace lens having a single focal
point. However, no three diniensional bootlace lens having more than one focal point has been
reported. It is the purpose here to report on three dimensional bootlace lenses having two, three and
four focal points. Equations for lens surfaces are obtained first for all three cases. An analysis is
included on aperture phase errors vhich shows that the scanning capability of a lens, in the scan plane,
will increase as the number of focal points is increased. Computer simulation of radiation pattens for
different scan angles confirmed this.

BIFOCAL THREE DIMENSIONAL BOOTLACE LENS I
Figure 1 shows the cross section of a bifocal lens in the XZ-plane which is also the scan plane.

The points S, and S 2 are two conjugate foci which lie orn a straight line, parallel to the X-axis, in the XZ
plane. The feed side of the lens has a curved surface, where the pickup elements are placed. The other
"side of the lens is a planar surface, where the radiating elements are placed. Flexible transmission lines
of length L are used in connecting pickup elements to the corresponding radiation elements. The line
SIC makes an angle a with the negative Z-axis. It is required that the main beam lie in UW-plane and
is directed at an angle -a to the W-axis when the feed is placed at SI, and a to the W-axis when the
feed is at $2.

P(XO,Z) L

SI /

F _ ý_ý
C ZW

Fig. I - Bifocal lens geomet.y in XZ-plane

Manuscript subniutted on December 2, 1980.
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Lens surfaces are obtained by using the following procedure. The lens cross section in the XZ-
plane is obtained first by treating the problem as if it is a two dimensional case with the specified
number of focal points. Then, the inner lens surface is obtained by rotating the inner lens cross section
with the feed line (straight fine passing through the focal points) as the axis of rotation. The outer sur-
face is obtained by simply extending the outer cross section of the lens in positive and negative direc-
tions of the V-axis. If S, and S2 are two focal points for the lens cross section in XZ-plane, it is not
difficult to verify that they are also perfect focal points for the three dimensional lens obtained by using
the above procedure. The same procedure is applied later, to trifocal and quadrufocal lenses.

In what follows, the lens parameters are determined by using the fact that the path length from
the focal point to any point on the corresponding wave front is a constant. Applying this condition to
the two rays emanating from S, in Fig. 1, we have

SIP + L + U sina - F + L, (1)

where L, L. are the transmission line lengths at a general point P and the origin C respectively,
F- SIC, and

SIP -(X- F sin)2+(Z + F cs a)2. (2)

Similarly, appiying path length equality between a general ray and the ray passing through the ori-
gin, which emanates from S2, one obtains

S 2P + L - U sin a - F + Lo, (3)

where

S2P- V(X+ FsinaC) 2 + (Z + F cos a) 2 . (4)

The following relation can be obtained using equations (1) and (3):

1 P 2- 2
2 =-4 U sin a (F + L,- L). (5)

From Eqs. (2) and (4), one obtains
S-• 2 - •2 _ -~p 4 FX sin a. (6)

Since the left hand side terms of Eqs (5) and (6) are equal, the right hand side terms should be
equal. This will be satisfied if the transmission line lengths are equal, and the X-coordinate of a pickup
element is equal to the U-coordinate of the corresponding radiating element. Therefore we obtain

L = L, and X-- U. (7)

Eliminating L and U from (1) using (7) and substituting S1P from (1) in (2) gives the inner lens
cross section in the XZ-plane and is given by

(F - X sin a) 2 - F2 + X2 + Z 2 + 2 FZ cosa• - 2 FX sin a. (8)

Rearranging the terms in Eq. (8), we have

Z 2 + X2 COS2 a + 2 FZ cos a - 0. (9)

As discussed earlier, the inner lens surface can be obtained by rotating the cross secton given by
Eq. (9) about the feed line (line passing through the two foci). Therefore, the equation for the inner
lens surface is given by

Z 2 + X 2VcoS 2 a+ + y2 + 2 FZ cos a - 0. (10)

i2
!"
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The corresponding V coordinate of the radiating element can be obtained from V - Y and U-
coordinate is given by (7).

Equation (10) is the mathematical expression of a spheroid whose trace in the XZ-plane is given
by Eq. (9), which can be rewritten as

X2  (Z + F cos U)2

F2 + F 2 o 2 ca
i.e., an ellipse with foci at the two focal points S, and S2, and the trace of Eq. (10) in the YZ-plane is

y2 + (Z + F COS C&2- F2 cos2 cv, (12)

i.e., a circle of radius F. - F cos a.

It is noted that the Eqs. (10), (11), and (12), representing the contour of the inner surface of the
lens, are the same as Eqs. (3), (4) and (5) of Dion and Ricardi [5]. However, for die lens being dis-
cussed here, 'he outer surface is planar and the path lengths between the surfaces is a constant,
whereas, for the waveguide lens discussed by Dion and Ricardi [5], the outer surface is an ellipsoid
(given by their Eq. (6)) and the path le',xgths between two surfaces are unequal.

The bifocal lens is symmetrical wit' a'espect to the YZ-plane and axially asymmetric. It may be
noted that, if the two foci are allowed to merge together on the axis of the lens, the angle a becomes
zero. Under this condition the lens becomes axially symmetric with the surface facing the feed becom-
ing a segment of a sphere centered at the feed while the opposite surface is still planar. This limiting
case corresponds to the geometry of a spherical-planar lens discussed by Patton [61, which is a singlefocus lens. As an example, Fig. 2 shows the bifocal lens cross section in the XZ-plane for a -, 10'.

x, U

0.5
CROSS SECTION CROSS SECTION

" OF THE INNER 0.4 OF THE OUTER A

I SURFACE SURFACE
0.3

0.2
S•i.0

0"

-0.3

-0.4

-- ,

Fig. 2 - Cross section of a bifocal lens in XZ-planc, or 10"
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APERTURE PHASE ERRORS: BIFOCAL LENS

When a feed is placed at one of the focal points, the emitted phase-front corresponds to a con-
stant path-length (no phase errors). However, when the feed is displaced from those focal points to
scan the beam to other angles, the corresponding wavefront will have some phase errors. If the feed
displacement is confined to the line passing through the two focal points, the phase errors will be
independent of the Y-coordinate (hence V-coordinate) and depends only on the X-coordinate (or U-
coordinate) and the scan angle 0. Therefore, to know the aperture phase errors, one needs to find only
the phase errors on the aperture cross section in the UW plane. It is the purpose of this section to
study these errors for a bifocal lens and compare the results with that of a single focus lens. For this
purpose, the feed is assumed to be located at an arbitrary point R on a line which is parallel to the X-
axis and passes through the focal points, as shown in Fig. 1.

Let the line RC make an angle 0 with the negative Z-axis. Then, the main beam direction should
be at an angle 0 from the W-axis, as shown in Fig. I. The coordinates of the feed point R are given by
(-F cosa tan0, 0. -F cosa).

The path-length from the feed position R to the wavefront, for a ray passing through a point

P(M, Z), is given by

LP •- RP + Lo - U sin 0, (13)

and for the ray passing through the origin C, it is given by

L,.= RC+ L. (14)

The path-length error is given by

AL = L1, - L, - RP - RC - U sin 0. (15)

From Fig. 1, one can obtain the values of RP and RC as

-P -- !(X + F Cos a tan 0)1 + (Z + F Cosa)2 (16)

and

RC = F cos a/cos 0. (17)

Eliminating Z from (16) using (9) and then substituting Ri' and R(" values in (15), the normal-
ized path length error is given by

AL it sin o + I + 2 2 sin2 a + 2 u tani , (18)
FCos 0 Cos

where u = U/1.F, and F, = F'cos a.

For comparison, the path-length error for a single focus lens can be obtained from (18) bý assunm-
ing a - 0 and is given by

F,, = usin-0 + -2 +2u tan0. (19)

Cos 0 -/cos 2

Figure 3 shows normalized path length errors for a bifocal (a - 107) and the single focus lens as a
function of normalized apenuie u. From Fig. 3, it may be noted that, when the normalized aperture is
limited to ±0.5, the maximum error occurs at u = -0.5 for any given scan angle 0. Figure 4 shows
this maximum path error on the aperture (u = -0.5) vs scan angle. For single focus lens, the magni-
tude of the path-length error increases as the scan angle is increased. For bifocal lens, the path error

4
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0 .00 -BIFOCAL LENS
(a = 10O)

0 - -SINGLE FOCUS LENS
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Fig. 3 - Path length errors in XZ-plane

.004-

BIFOCAL LENS (a 100)

.002--

[..

o 0
cc2--,4 68 10 12 '14 16 18 20

w SCAN ANGLE IN DEGREES

~-.002--
z _LI

-.00 (50

"s; -OD6 SINGLE FOCUS LENS

(a0) BIFOCAL LENS

Fig. 4 - Path length error vs scan angle (for u -0-05)
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will be maximum for zero scan angle and decreases monotonically with the increase in scan angle,
reaching zero error at the scan angle a. Then, the magnitude of the path error increases monotonically
for scan angles greater than a. From Fig. 4 it may be noted that for a - 100, the bifocal lens will have
normalized path errors less than .004 over a scanning range of + 14 *, whereas the single focus lens can
only be scanned to slightly less than ± 10. Therefore, some 40% more scanning range is possible with
bifocal lens compared to a single focus lens. Similar conclusion can be reached for the case of a - 5o
shown in Fig. 4. As noted before, for scan angles less than a, maximum path error occurs at zero scan
angle. Figure 5 shows this maximum path error vs a. This curve will be useful in choosing o for a
specified maximum phase (or path length) error with the understanding that the maximum scan angle
is approximately equal to + 1.4 a for the specified phase error.

.005-

o

LL0 .004-

II

_J

.002-

- .001

L l

0 2 4 6 8 10
a IN DEGREES

Fig. 5 - Peak paihi lengihi error vs a [or bil ocul lens
will) (F1 DJ) - I

TRIFOCAL THREE DIMENSIONAL BOOTLACE LENS

It was shown that a three dimensional bootlace lens having two perfect focal points can be used as
a multiple beam antenna or can be used to scan more beamwidths compared to a lens having only a sin-
gle focus. However, its scanning capability is still limited. It will be shown that a three dimensional
bootlace lens with three perfect focal points has a wider angle scanning capability compared to a bifocal

The trifocal lens design differs from the bifocal model in that the corresponding points on the two

lens contours (X and U components in Fig. 6) are not equidistant from the YZ-plane. This additional
degree of freedom in design permits specification of a third focal point. However, to be a perfect focal
point in three dimensions, the location of the third focal point should be on a line joining the pair of
conjugate foci S, and S2, and symmetry condition dictates it to be on the axis ol symmetry, as shown in
Fig. 6.

F.gure 6 shows the cross section of a trifocal lens in the XZ-plane. The points So, S1, and S2 are
perfect focal points for radiation at angles 0, --a, and a to the W-axis, respectively. They are located,
in the XZ-plane, on a line parallel to the X-axis. The coordinates of these focal points are given by (0,
0, - F0 ), (F sin a, 0, -F cos a), and (-F sin a, 0, -F cos a), respectively, relative to the origin C.
Considering a central ray passing through the origin C, and a general ray passing through the point

6
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S×X U

-. , L

Sol azO._w- Z,

Fig. 6 - Trifocal lens geometry in XZ-plane

P (X, Z), both originating from focal point S1, the condition for optical path length equality gives the
following relation:

-UP + L + U sin ar -- F + Lo, (20)

where
SP7 - V(X - F sin a)' + (Z + Fcosa)2, (21)

L = Transmission line length at a general point P,

and Lo - Transmission line length at the origin C.

Similarly, applying the condition for path length equality of central and general rays originatir.g
from the focal points S2 and So, one obtains

S2P + L - U sin a- F + LO, (22)

SOP + L - Fo + Lo, (23)

where

S2- .I(X + F sin a )2 + (Z + F cos a)2 , (24)

and ]

S- X 2 +(Z + F)2. (25) ri

From Eqs. (20) and (22) we have

S 2 -S P2 - 4 U sin a(F+ L0 - L), (26)

and from Eqs. (21) and (24) we obtain
Y2 P - 4 FX sin a. (27)

Excluding the degenerate case of tx - 0 (in that case S, and S2 merge into a single point on axis;
consequently, there will be less than three focal points), and equating the right hand sides of Eqs. (26)
and (27) one obtains

FX - U (F + L,,- L). (28)

Equation (28) gives a relation between X, U and L - L,. An equation relating U and L - L" can
be obtained as follows. Substituting the vaiue of S1P from (20) in (21) and eliminating X (but not X2)
using (28), one obtains

7
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X2 + Z 2 + 2 ZFcosa 2 F (L 0 - L') + (L,- L) 2 -+U 2 sin2'. (29)

Similarly, substituting S 0 P from (23) in (25) we get

X2 + Z 2 + 2 ZF, - 2 F, (L 0 - L) + (Lo - L) 2. (30)

The left hand sides of (29) and (30) are equal because F0 - F cos a. So, equating the right hand
sides gives an equation relating U and L - Lo as

L cos2 La/2). (31)

Equation (30) represents the cross section in the XZ-plane of the inner surface of the trifocal lens
with X. Uand 1.•- L related as shown in (28) and (31).

For specified values of design parameters a, F, and the element location U on the radiating sur-
face, Eq. (31) can be used to find the corresponding L - L, Then, the corresponding value of X can
be found by substituting the known values of a, Fo, U, and L - L, in (28). Finally, the corresponding
Z coordinate of the inner lens surface can be found from (30), knowing X, F, and L - L,. By assum-
ing different values for U, complete inner surface cross section in XZ-plane can be obtained. As an
example, Fig. 7 shows the cross section of a trifocal lens for a - 150. The three dimensional inner
surface of the lens can be obtained by rotating this cross section about the line on which the focal
points are located. This completes the design procedure of the lens.

Requirements on the scanning range, allowable aperture phase errors, and the aperture size will
determine what values should be chosen for design parameters a and F,. In this regard, the analysis on
aperture phase errors, which is discussed in the next section, will be useful.

X, ,

CROSS SECTION ý_,CROSS SECTION 11
OF THE INNER OF THE OUTER
SURFACE SURFACE

Si

z,w

S2

Fig. 7 - Cross section of a trifocal lens in XZ-plane, a - 15'
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APERTURE PHASE ERRORS: TRIFOCAL LENS

When a feed is displaced from the focal points to scan the beam to other angles, there will be
some phase errors on the aperture. It is the purpose of this section to study these errors for trifocal
leils. Let R be an arbitrary feed position on the feed line (a line passing through the focal points) such
that the main beam direction is at an angle 0 to the Z-axis, as shown in Fig. 6. Similar to a bifocal
lens, if the feed location is confined to the feed line, the aperture phase errors are independent of the
coordinate / and depend only on U and 0. Tl:;refore, to know the aperture phase errors, one needs to
find only the phase ;.rrors on the aperture cross section in the UW-plane.

"The coordinates of the feed point R are given by (- F, tan 0, 0, - F.). The path length from
feed point R to the phase front, for a general ray passing through the point P(X, 0, Z) is given by

L;- RP + L- U sin O. (32)

Similarly, the path length of the central ray, passing th:ough the origin C, is given by

L,.- RC + L0  (33)

Therefore, the path length error is

AL - LP- L,- RP- RC- U sin 0 + L -L. (34)

From Fig. 6, one can obtain values of RP and kC as

RP - V(X + F. tan O) 2 + (Z +F)2 (35)

ai:d

RC - Fo/cos 0. (36)

Eliminating Z from (35) using (30), one obtains

R-P- (Fo/cosO)2 + 2F, (U - L) + (L - Lo)2 + 2 X F, tan 0. (37)

Substiuting RP and RC values from (36) and (37) in (34) and expressing L - L, and X in terms
of U using (31) and (28), it can be shown that the normalized path length error is given by

AL - B - u sin 0 - (1/cos 0) +
F.

/il/cos0)2 - 2 B + B2 + 2 u tan0 (1 - B cos a), (38)

where

u - U/F, and B - u2 cos a cos2 (a/2).

Figure 8 shows normalized path length errors for trifocal lens as a function of aperture dimension
u, for a - 15*. It may be noted that, similar to bifocal lens, the maximum error occurs for u - -0.5
for any given scan angle when .. e aperture is limited to a range of u ±- 0.5. However, the path
length error at u - 0.5 has an opposite sign compared to that at u = -0.5. Therefore, the maximum
phase excursion on the aperture is proportional to the difference of path length errors at u - -0.5 and
u = 0.5. This total maximum path length error is plotted as a function of scan angle in Fig. 9. For
scan angles less than o, (15' in the example), the peak error occurred for a scan angle of about 90. For
scan angles greater than a, the error increases with the increase in scan angle. It may be noted from
Fig. 9 that, for scan angles in the range of ±i 17', path length errors are less than .0011, whereas the

9
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Fig. 8 - Path length errors in XZ-plane for a trifocal lens with i - 15"

.004

Cc
0Cr

0:U .002

o .002

-I:

z0.

o~ ~ 0! ' S 10 5 DEGEE

SCAN ANGLE IN DERS

-. 001 -i

Fig. 9 - Path length crror vs scan angle for a

trifocal lens (6 Is')

single focus and bifocal lenses can be !,canned to only ± 50 and ± 70 respectively. From Fig. 9, it was
noted that the peak error occurs at a scan angle between 0 and a. This peak error increases with the
increase in a. Figure 10 shows this relationship. This curve will be useful in choosing a for a specified
peak phase (or path length) error. Once a is known, the scanning range, which is slightly larger than
±a, can be found for specified phase errors.

QUADRUFOCAL THREE DIMENSIG',AL BOOTLACE LENS

Quadrufocal lens design differs fr.m that of the trifocal case in that the outer surface of the lens
is not constrained to a planar surface. Ihis additional degree of freedom in design permits specificationof four, rather than .iu" three focal points. Lens symmetry dictates that those four focal points form

two conjugate pairs. 11 shows t;iv lens cross section in XZ-plane. S1, Si, S2 and S; are four

10
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Fig. 10 - Peak total path iength error vs a for a
trifocal lens with (FOD) - I

P(X,O,Z) ",

SI F1 .ý

SF- Fo

s~i

tf

Fig. I1 - Quadrufocal lens geometry in XZ-p'ane

focal points for radiation at angles -a 1 , a1 , -a2, and a 2 to the W-axis respectively. The inner lens sur-
face and locations of focal points are expressed in X, Y, and Z coordinates. The coordinates of the
outer lens surface are expressed in U, V, and W. As discussed earlier with other lenses, the three
dimensional inner surface of the lens can be obtained by rotating the lens cross section in ',&Z-plane

about the feed line (the line on which the focal points are located). The outer surface of the lens will
be shown to be a part of a circular cylinder.

Applying the path length equality from the focal point SI, to the corresponding wave front yields

SIP+ L - WcosaI + Usina I- F, + %, (39)

where

SiP - (X- F, sinai) 2 + (Z + F, cosa1) 2, (40)

11•" ... ... : _ __1_ _ ",. . 1.. ,
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and

Similar to (39) and (40), the following relations can be obtained for focal points S, S2, and S;:

S P+ L- W'cos a- U sin a 1  F,+ L(,, (41)

SiP " (X + F, sinal) 2 + (Z + F, cosa1 )2  (42)

S 2P+ L- Wcosa 2 + Usina 2 - F2 + Lo, (43)

S2P - V (X - F2 sin a 2)
2 + (Z + F2 cos a 2) 2, (44)

S;P + L - W cosa2- U sina 2 - F2 + L0 , (45)

and

Sy p- /(X + F 2 sin a 2 ) 2 + (Z + F2 Cos a 2)
2 , (46)

where F 2 - S2 C.

From (39) and (41) we obtain
SP -SP' - 4 (F + L - L + W cos a 1 ) U sin a1 . (47)

Similarly, from (40) and (42) we have
S11-P SP -, 4 F, X sin a t. (48)

Excluding the case of u 1 0 (in that case S, and S, merge and becomes a special case having
less than four focal points, which is already discussed), it is evident that right hand sides of (47) and
(48) should be equal and the following relation is obtained:

X- (U/FI) (F, + Lo - L + W cosa 1). (49)

A similar result to (49) can be obtained by considering Eqs. (43) to (46), instead of (39) to (42),
and is given below: (

X - (U[F2) (F2 + Lo,- L + W COS Q2). (50) i

Equating the right hand sides of (49) and (50), noting that F0 - F, cos a I- F 2 cos a 2 , the fol-
lowing relation can be obtained:

L- Lo- W(cosal+cosa2). (51)

Equation (51) can be used to find W, knowing L - L0 or vice versa for given values ofa-I and a 2.-
A relationship between U and W o; L -- Lo is required to finish the lens design. This is obtained in the
following manner.

Substituting the value of S1P form (39) in (40), squaring on both sides and eliminating X (but
not X2) using (49), one obtains

X2 + Z2 + 2Z F, cosaI - (L - Lo)2 + U2 sin 2 a + W2 cos 2 • 2 F,(L- LO)

+ 2 F, W cos a- 2(L - LO) Wcosa1 . (52)

12
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Using the same procedure, an equation which is similar to (52) and corresponds to second conju-

gate pair of focal points can be ob.ained as
X2 + Z 2 + 2ZF 2 cos a 2 - (L - LO) + U' sin 2a 2 + W2 cos2 a 2 - 2F 2 (L - Lo)

+ 2F2 Wcoqa 2 - 2(L - Lo) W cos c. (53)

Knowing that F, cos aI - F2 cos a 2 - F0, it may be noted that left hand sides of (52) and (53)
are equal. Equating right hand sides of (52) and (53), eliminating L - Lo using (51) and simplifying,
it can be shown that

U2 + (W- Re) 2- Ro, (54)

where

Re- FO/co",a Icos a 2.

Equation (54) defines the cross section, in the UW-plane of the outer surface of the lens. The
cross section is an arc of q circle of radius Re with a center at W - Ro. Therefore, the outer surface of
the lens is a part of a circular cylinder.

An equation for the inner leas cross section is obtained using the following procedure. Eliminat-
ing L -- L0 and Win (52) using (51) and (5A) one obtains

V2+ Z'+2- 2Z F0- U2 (I-_ cos2 al- COS 2al). (55)4

It can be shown, using (49), (51), and (54), that Uand Xare related as

U4 - U2R3 + X2Rd - 0, (56)
or

U2 _ (Re/2) (Re - - 4X2)),, (57)

where R0 is defined earlier in (54).

Substituting the value of U2 from (57) in (55), one obtains the cross section in XZ-plane of the

inner lens surface as
X2 + (Z + F0) 2 - Fd + (Rd/2) (R0 - -r('Y7j _ 4X2))(1 - cos 2 al - COS 2 a2). (58)

Therefore, the inner lens surface is given by
'X2 + Y2 + (Z + ic) 2'- F + (Ro2) (Ro- r(Rj- 4X2)) (I- cos 2 a I- cos 2 a 2). (59)

It is possible to eliminate the radical (square root) in (59) and obtain a fourth order equation for
the inner surface of the lens. However, it will not be done here since (59) in its present form shows
that for any given value of X, the inner surface is represented by a circular arc. For given values of F0,
a ,, a 2, and the element location U on the radiating surface, corresponding values of Wand X can be
found using (54) and (56). The corresponding value Z can be found from (58), knowing X, Fo, aI and
a 2. Transmission line length L -Lo can be found from (51), knowing W, a and a 2. By assuming
different values for U, complete inner surface cross section in the XZ-plane and the outer surface cross
section in the UW-plane can be obtained. As an example, Fig. 12 shows the cross section of a qua-
drufocal lens with a1 - 10* and a 2 - 25* The three dimensional inner surface of the lens can be
obtained by rotating the cross section in XZ-plane about the line on which the focal points are located.
The comphkte outer surface of the lens can be obtained by extending its UW-plane cross section
towards the positive and negative V-axis. This completes the design procedure for the quadrufocal lens.

13
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X, U

CROSS SECTION CROSS SECTION
OF THE INNER OF THE OUTER

SURFACESURFACE

S,. .Z, W

S' 2 .

Fig. 12 - Cross section or a quadrulocal Icns with a - 10° and u - 25"

Requirements on the scanning range, allowable aperture phase errors, and the aperture size will
determine what values should be chosen for design parameters F0, a1, and a 2. In this regard, the
analysis on aperture phase errors, which is discussed in the next section, will be useful. I
APERTURE PHASE ERRORS: QUADRUFOCAL LENS

Using a procedure quite similar to that used for bifocal and trifocal lenses, it can be shown that F'
the normalized path-length error in the UW-plane, when the beam is scanned to an angle 0 by placing a
feed at R as in Fig, 11, is given by

AL_ d - u sin 0 - w cos 0- (1/cos 0)
Fo

+ •i(l/cos 0)2 + u2 (I - cos2 a, - cos 2 a 2) + 2 x tan 0, (60)

L-L 0 '- W X

-whered- 0 u- u w -T andx
Fo F0  F0

For a given value of U, corresponding values of W+, L. - Lo and Xcan be found using (54), (51)
and (56). Substituting these values in (60), the path length error can be found for specified values of
F0, at, a 2 and 0. Figure 13 shovs normalized path length errors for the quadrufocal lens as a function
of normalized aperture u, and for different scan angles when a I - 11 and a 2 - 25 *. It may be noted,
similar to the bifocal lens, that the maximum error occurs for u - -0.5 for any given scan angle when
the aperture width is limited to u - L0.5. Figure 14 shows the maximum error as a function of posi-
tive scan angles for a 2 - 250 and for different values of a . Fnr a - 10 , the peak phase error (for
angles below a2) occurs at an angle between a 1 and a 2. The peak value at zero degree scan angle is
smaller than the peak value betw.en a and a 2. For a - II ", those two peak values are approxi-
mately equal. For a - 12 * the peak value at zero degree scan angle is larger than the peak between

a 1 and a 2. These observations point to a fact that there is an optimum value of a I for a given value if
"&2 which makes those two peak phase errors equal and less than the peak erroi for any other value of
a •. Attempts to determine analytically this optimum value of a for a given a2 were not successful.

14
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Fig. 13 - Path length errors in XZ-plane for a quadrufocal lens
withalI II* and(V2 25°*

a .002

S(V2 25",(x• 12"0

Z -001 25",xi < 11" i
-(2 25",(x1  10' /

S0 •
U 5 10 15 20 2b 30

N_

oo L
O .001 SCAN ANGLE IN DEGREES
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However, Mr. Paul Shelton suggested a method* of determining the approximate optimum value for a I
and it is given by a, - a 2 (383/924). Then, the corresponding peak phase error can be obtained by
substituting 0 - 0 in (60). Then, a curve, similar to Figs. 5 and 10, showing the peak error increasing
with angle 012, can be obtained as shown in Fig. 15. Therefore, for specified peak phase error, a 2 and
the corresponding optimum value of a I can be found. Once a 2 is known, the scanning range, which is

slightly larger than ±a 2 can be found using the method suggested by Mr. Paul Shelton. Using the
approximate relation between the number of foci and maiximum scan angle, as suggested by Mr. Shel-
ton, and the results of Figs. 5, 10, and 15 one cn obtain curves relating maximum scan angle for
specified maximum path length error for all the lenses as shown in Fig. 15a. From that figure it is evi-
dent that for a given maximum path-length error, a lens with a larger number of focal points can be
scanned to larger angles.

0.002 -
0

cc

LU

_j 0.001

o I

0 5 10 15 20 25 3 30

a2 IN DEGREES T-

Fig. IS - Maximum path length error vs 2 for quudrufocal lens with VOID) I

'Mr. Paul Shelton of NRL suggested the following analysis which can be used to find an approximate optimum value of a for an
assumed value of a 2 for quadrufocal lenses. His analysis can also be used in determining the maximum scan angle for a given a
in bifocal and trifocal lenses and for a given a 2 in quadrufocal lenses.

"For the multifocal configuration, assuming that the phase error function is a polynomial in the scan angle or feed
pos!tion, then the optimum polynomial is the Tchebycheff, Ta(s) - cos (n cos-1 s), where n is the number of foci and
s is the scan angle or feed position. Thus, the focus locations relative to maximum scan are given by s - cos (ir/2n),
cos (3r/2n), etc. For n - 2, s - ±0.707; for n - 3, s - 0, ±0.866; and for n - 4, s - ±0.383, ±0.924."

Using the above approximate analysis, the relations between maximum scan angle 0m,, and feed positions (defined by the
parameter a) are given below for lenses with different foci.

a - 0.707 Omux for bifocal lens (n - 2)
a - 0.8"6 6 0, for trifocal lens (n - 3)

a 1 0.383 8. and"
for quadrufocal lens (n - 4).

a 2 - 0.924 Omax

The same Tchebycheff polynomial approximation can also be used in finding the angle 0,,,h at which the path-length error is
maxirnum by finding the 9 value for which T.(W) is maximum. Knowing 0,k, one can find maximum path-length errors for bi-
focal and trifocal lenses using Eqs. 08) and (38) for different values of a. It was verified that there is a very close agreement
between the results obtained by this approximate method aad those shown in Figs. 5 and 10.

16
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So far, it is assumed that the scanning is accomplished by confining the feed to a straight line
passing through the focal points. Only a limited investigation has been made on the scanning capability
in the other planes. The results show tha,' in the orthogonal plane (VW-plane) the scanning capability
of multifocal lenses is limited and somewhat less than that of a single focus lens. Therefore, multifocal
lenses are useful v here the required scanning in one plane far exceeds that of the orthogonal plane [7].

e 0.004 -
0 SINGLE FOCUS LENS BIFOCAL LENS

- 0.003-
I--

-J 0.002 -
I TRIFOCAL LENS

2 0.001 - QUADRUFOCAID LENS.• ,•

0 L
0 5 10 15 20 25 30

MAXIMUM SCAN ANGLE IN DEGREES

Fig. 15 a - Maximum scan angle vs maximum path length error ror difiercn m lenses 1 4

RADIATION PATTERNS

Computer simulation is used in obtaining radiation patterns for lenses discussed in this report. In
addition to their geometries, effects of feed element pattern and pickup elements patterns are also
included. Appendix A contains a detailed discuss!in on computer simulation. Radiation patterns were
computed for lenses with radiating aperture of 60 X by 60 X and (FI/D) - 1. The inter-element spac-
ing is assumed to be X/2. Figure 16 shows radiation patterns of a bifocal lens with a - 5 '. From ear-
lier discussion on bifocal. lens, it may be recalled that peak phase error occurs at zero scan angle and the
scanning range is -L 1.4 x. Therefore, patterns shown in Fig. 16 are the worst possible patterns, i.e.,
one at zero scan angle and the other at the scan limit. The =orresponding peak error for a - 5 0 can be
found from Fig. 5 and is given by .06 X for 60 X aperture width and (Fo/D) - 1. For a 10 dB ampli-tude taper on the aperture, one would expect the sidelobes to be about 21 dB below the mainlobe peak,
if there are no phase errors. With the above stated errors, which are quite small, it may be seen from

Fi8. 16 that their effect on the sidelobes is negligible. Figure 17 shows two worst patterns in the scan
range corresponding to a - 7.50* The corresponding peak error, from Fig. 5, is .228 X (.0038 x 600).
This error is not negligible and its effect on the radiation patterns can be seen from Fig. 17, i.e.,
shoulder formation.

Figure 18 shows radiation patterns for a trifocal lens with a - 180. The feed element pattern is
chosen such that the aperture edges have a 10 dB amplitude taper when the feed is located on the axis
(zero degree scan). From the eprlier discussion on trifocal lenses it may be noted that there are no
phase errors for the on axis beam and for the off axis beam at the angle a (180 in the example). As is
noted from Fig. 18, the sidelobes are down by 21 dB for the on axis beam which is what one expects
for a 10 dB amplitude taper. However, the sidelobes are higher for the 180 off axis beam. This is due
,o the decrease in amplitude taper on the aperture, when the feed is moved to produce off-axis beanms.
Therefore, the sidelobes can only be reduced by increasing the feed size for off-axis beams. For a
180, the peak phase error for trifocal lenses may be obtained from Fig. 10 and is given by 0.1032 X
(0.00172 x 60X), which occurs for a scan angle of about 11". The effect of phase errors can be seen
from patterns at scan angles of 11 and 150. Sidelobes are unsymmetrical, being higher on one side and

17L ______
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Fig, 17 - Scan plane patterns of bifocal lens with a 1 .5'
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F'ig. 18 - Scan plane patterns of trifocal lens with a - 18'

lower on the other. Change in amplitude taper may also havc some effect on the sidelobes. The value
of a - 180 was purposely Ahosen to see the effects of phase errors. By choosing a smaller value for a
(say 150) the effect of phase errors can be reduced. However, it may be seen that the scanning range
of a trifocal lens is at least twice as much as that of a bifocal lens.

Figure 19 shows the pattern of a trifocal lens in the orthogonal plane (0-plane) when the beam is
scanned to 11* in 0-plane. The pattern is symmetric and sidelobes are much lower compared to those
in the scan plane.

0 i
-10 TRIFOC06L LENS

P 10

-20 -

Fig. 19 - J-plane pallern z -30

-50
-18 --12 6 0 6 12 18

ANGLE + IN DEGREES
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Figure 20 shows two scan plane patterns of a quadrufocal lens (witha I 11° and U2 = 250), one
on boresight and the other at 200 off axis. As can be seen from Fig. 14, the peak error on the aperture
for these beams is 0.042 X (0.007 x 600). Since this is a small error, it has negligible effect, as may be
seen from the on-axis beam. For other beams in ± 27' range, peak aperture errors are smaller. The
feed pattern used in computing these patterns is such that the on-axis beam has a 10 dB amplitude
taper. However, using the same feed for off-axis beam gives slightly asymmetric amplitude distribution
with less than 10 dB taper. This is the reason for sidelobes being higher for off-axis beam compared to
on-axis beam. This indicates that a larger feed should be used for larger scan angles to obtain the same
amplitude taper. Figure 21 shows patterns at 200 and 27' off-axis when feed patterns are chosen to
obtain a 10 dB taper. Sidelobes are at -20 dB level, instead of -21 dB one would expect for a 10 dB
amplitude taper.

0

10 - a, 11°,, 2  25°

-20

Z 30

-40

-6 I 1 I I I I 1 I

-3 -2 -1 0 1 2 3 17 18 19 20 21 22 23

ANGLE FROM BORESIGHT IN DEGREES
Fi,. 20 - Scan plane patterns o1 quadrufocal lens withl

feed pattern independent or scan angle

0 o1 11', 2 - 251

a.3
_ ji

z -30 t

40.

-501

17 18 19 20 21 22 23 24 25 26 27 28 29 30
ANGLE FROM BORESIGHT IN DEGREES

Fig. 21 - Scan plane patterns of quadrufocal ICles wIh
feed pattern changed wilth scan angle
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CONCLUSIONS

Three dimensional bootlace lenses having iwo, three and four perfect focal points are proposed.
Design equations are obtained for inner (pickup) and outer (radiating) surfaces for all threk, lenses.
Aperture phase errors are analyzed when a feed 's moved to scan the beam to different angles in a scan
plane. The results of the analysis showed that the scanning capability of a lens increased with the
increase in number of focal points. Computer simulation of radiation patterns are also presented for all
three lenses. These results also show that a lens with a higher number of focal points can be scanned
to larger angles. Our limited investigation also showed that the scanning capability of multifocal lenses
is limited in the orthogonal plane and somewhat less than that of a single focus lens. Therefore, multi-
focal lenses are useful where the required scanning in one plane far exceeds that of the orthogonal
plane.
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Appendix
COMPUTATION OF RADIATION PATTERNS

As discussed in the text, let the radiating surface be specified in U, V, W coordinates. Since the
cross section of' the radiating surface is independent of the coordinate V, an element position on a radi-
L.Jng surface can be expressed -as (U,,,, V,1, W,..,), where in takes on values from 1 to M and n takes onl
values fromn I to N'. Therefore, there are a total of MN elements. Then, the radiation pattern can be
expressed as

Lt N U, iinf"oso + r sinf sino+ 1i cosa+k01

Where 0, 4are the polar coordinates of a field point,

A,,,,, is the amplitude excitation of the element at (U,,,. ,, V11 W.),

and
i,,is the phase excitation of the element at (U,,,, V,, W .. which is independent of 1',, or ni.

Results obtained from phase error analysis in the text can be used to find the appropriate expres-
sions for c,,, for all three lenses and will be given later. The procedure and formulation to find ampli-
tude excitation ~',.is similar for all three lenses and is discussed below.

Finure Al shows the geometry used in determining A,,.,.. Let S be the feed position such that the
main bfram is directed at an angle 0o to the Waxis. The position of an element at i on the pickup sur-
face is represented by (K,,,1,, Y11111, Z,), and is connected by transmission line to a corresponding el-
ment P0 (U,,,, V, IV..,) on the radiating surface. It is assumed that the feed element is tilted such that
its pattern maximum is in the direction of SQ. Similarly, the pickup element is placed such that its pat-
tern maximum is in the direction of PG. It is now evident that 4s,, depends on the feed pattern,
pickup element pattern, angle 8,) , angle ,and the distance 9P. Therefore, A,..,, may be expressed as

A1,11 KIt Kmfj KtI,( 2

where K/,, is feed element pattern factor,

K,,,, is pickup element pattern factor,

and K,, is the distance difference factor.

For computational purposes, the feed element pattern is assumed as a power of a cosine function
and is given by

I c Cos s0 (8e,,,,), Wt)

where N,, is an arbitrary constant to be chosen to give proper amplitude taper. The pickup element pat-
tern is assumed to be of the form

Kam m,, o sin iar4t sine u ,at -

- si�i K , ,,,, (A
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xU
P(Xmn, Ymn, Zmn)
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Fig. AI - Geometry used in determining the
amplitude excitation A.,.

For the results presented in the text, B is taken as

The distance difference factor is given by (see Fig. Al)

S cos Oo •/(X + Ftan 0.) 2 + y2 + (Z, + Fo) 2

To use Eqs. (A3) and (A4) one needs to know 8,, and 0,,. Referring to Fig. Al one can show
that

cos (8.) - asq a , + "yv YS,, (A6)
and

COS (Omn) - aOp aptl + P"- )Spg + Yps Ypg, (A7)

where

,asp-- ap (Fo tan 00 + X,,)/dp,

/3 ps- - Ymld,,,/•

p- ps - (F. + Zmn)/dv,

a- sin 0.,

1 y q COS 00,
apg - XmnIdp,

P•p - -Y.,,,I dp,.

ypg (Fo + Zm,)/dg p,

d, - F!lcos 0o,

d•= -V,/(x,. + Fo CoS 0) 2 + Y ~ +(Zmn + FR)2 ,

and

do= .X.,, + Y,,2 + (Zmn + FR)2.

23
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The above formulation is common for all three lenses. They are used with the following relations
obtained by using the information given in the te'xt tor individual lenses. In what follows, element
coordinates Urn, V, on the radiating aperture, F,, aperture width D, a, a,, and a 2 are assumed known
or used as a variable parameter.

BIFOCAL LENS

W -0

Y.n Vn

Z.n- - F0 + ý/2 - xml, cos2 a- y•

(F0/(:os 0o) - V(Fo/cos 0,)2 + Xm sin 2 a + 2 Xm, Fo tan G0,

TRIFOCAL LENS
W.-0-X. U.1- (U.I/F0 )2 COOaCOS2

Xm. - Ur I 05 a 2

Z,,.- F, + /[o-(U,,'/lFo) cos a cos2 (a/2)]2 - X,,n - Y.2

- (Fo/cos 0,) - T - V/(Fo/cos 0,) 2 - 2T F& + T2 + E

4.
where T - U.2 cos a cos2 (a/2)/F&

and E - 2 U, tan 0o (Fo - T cos a).

QLADRUFOCAL LENSSX'~Krn - Urn 1 xfTU~m/Fo)2 ¢°s at cos2 at2[

W. U-F V1- (U4j / cosa l COsa2

L. - Wm (cos a I + cos a 2)

Y.,, - V11

4,V - - Fo + 2F0
2 + U" (1 - cos 2 a, - cos 2 ,X2) - - .

- (Fo/COS 0o) - L-

V(o/Cos 0o)2 + U,' (1 - cos 2 aI - cos 2 ae2) + 2 X. F, tan 0o.
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